5.99, 6.10, 6.18, 11.2 µ. Anal. Found: C, 66.74; H. 6.71, and 16-methyl- 9α -fluoro-1,4,15-pregnatriene-11 β ,17 α ,21-triol-3,20-dione 21-acetate (VIII), m.p. 242–247°; $[\alpha]_{D}^{C_{s}H_{s}O} + 45^{\circ}; \lambda_{max}^{CH_{s}OH} 238$ $m\mu$ (15,100); λ_{max}^{Nujol} 2.91, 3.05, 5.75, 5.81, 6.01, 6.15, 6.19, 11.25 µ. Anal. Found: C, 66.72; H, 7.08. Extended reaction of the 16β -methyl- 16α , 17α oxide (V) with hydrogen chloride in acetic acid led to the 16-methylene compound (VII) and two substances evidently derived from the Δ^{15} -16. methyl compound (VIII).⁸ These are, respectively- 9α - fluoro - 16 - methyl - 1,4,14,16 - pregnatetra
ene-11,21-diol-3,20-dione 21-acetate (IX), m.p. 282–285° dec. $[\alpha]_{D}^{CHCl_{s}} + 531^{\circ}; \lambda_{max}^{CH_{s}OH} 307 \text{ m}\mu (12,400),$ 236 mµ (16,200). Anal. Found: C, 69.48; H, 6.88, and 9α -fluoro-15 α -chloro-16-methyl-1,4,16-pregnatriene-11,21-diol-3,20-dione 21-acetate (X), m.p. 272-275° dec. $\lambda_{\max}^{CH_2OH}$ 241 mµ (20,800); λ_{\max}^{CHCls} 2.77, 2.90-2.95 (11β-OH), 5.74 µ (21-OAc), 6.00 µ (3,20-C==0), 6.12, 6.18, 11.16μ .

The biological properties of the pertinent new compounds are currently being evaluated.

Merck & Co., Inc.	D. TAUB
Rahway, N. J.	R. D. Hoffsommer
	N. L. WENDLER

Received August 1, 1960

(8) Compare (5).

Hydrogen Sulfide Adducts of Halogenated Aldehydes and Ketones

Sir:

gem-Diols (aldehydes and ketone hydrates) derived from aldehydes and ketones with strong electron attracting groups—e.g., chloral, bromal, glyoxylic acid, and highly fluorinated aldehydes and ketones—have been isolated and characterized. In recent years, a variety of gem-dithiols have been prepared and they appear to be a relatively stable class of compounds.^{1,2} Apparently there is no previous report of the isolation of a compound with a hydroxyl and mercapto group on the same carbon.³

It has now been found that such compounds can be prepared by the reaction of hydrogen sulfide, without added catalyst, with fluorinated or chlorinated aldehydes and ketones:

For example, 1,3-dichloro-1,1,3,3-tetrafluoro-2-mercapto-2-propanol (b.p. $51^{\circ}/15$ mm., $n_{\rm D}^{24}$ 1.4208, $\lambda_{\max}^{\text{CHCl}_{1s}}$ 3.85 μ (sulfhydryl), 2.85 μ (hydroxyl), [Anal. Calcd. for C₃H₂Cl₂F₄OS: Cl, 30.4; F, 32.6; S, 13.8. Found: Cl, 30.5; F, 33.0; S, 14.0] was prepared in 91% yield by heating sym-dichlorotetrafluoroacetone with an excess (six-fold) of hydrogen sulfide in an autoclave at 80° for several hours. A lower yield was obtained from a comparable experiment at room temperature. The corresponding olthiols were also prepared from chloral, tripentafluoropropionaldehyde, fluoroacetaldehvde. heptafluorobutyraldehyde, 5-hydrooctafluorovaleraldehyde, decafluoro-3-pentanone, and tetradecafluoro-4-heptanone. The boiling points and refractive indices of these compounds are tabulated in Table I. All of these olthiols could be distilled in vacuo. The infrared spectra exhibited characteristic OH and SH frequencies. *a*-Hydroxy disulfides could be prepared by reaction of the olthiols with sulfenyl chlorides.

TABLE I

PROPERTIES OF OLTHIOLS, R1R2C(OH)SH

R ₁	R ₂	B.P./mm.	n ²⁵ _D	
$\begin{array}{c} \mathrm{CCl}_{3} \\ \mathrm{CF}_{3} \\ \mathrm{C}_{2}\mathrm{F}_{5} \\ \mathrm{C}_{3}\mathrm{F}_{7} \end{array}$	H H H H	71-74/4 51/80 56/66 54/46	1.5533 1.3879 1.3611 1.3507	
$egin{array}{cc} \mathrm{H}(\mathrm{CF}_2)_4 \ \mathrm{C}_2\mathrm{F}_5 \ \mathrm{C}_3\mathrm{F}_7 \end{array}$	H C2F5 C3F7	69-71/17 41/56 38-39/10	1.3669 1.3251	

A considerable variation in stability at room temperature was noted within this group of compounds. The olthiol derived from *sym*-dichlorotetrafluoroacetone appeared to be unchanged after several days at room temperature. The olthiol from decafluoro-3-pentanone, on the other hand, was completely decomposed, presumably to the ketone and hydrogen sulfide, after just a few hours at room temperature. Those derived from chloral and the fluorinated aldehydes are of intermediate stability.

Work is continuing to determine the scope of the H_2S — carbonyl addition reaction. A study is also being made of the chemistry of these new olthiols.

CONTRIBUTION NO. 641 FROM JOHN F. HARRIS, JR. CENTRAL RESEARCH DEPARTMENT EXPERIMENTAL STATION E. I. DU PONT DE NEMOURS AND COMPANY WILMINGTON 98, DEL. Received September 7, 1960

⁽¹⁾ T. L. Cairns, G. L. Evans, A. W. Larchar, and B. C. McKusick, J. Am. Chem. Soc., 74, 3982 (1952).

⁽²⁾ G. A. Berchtold, B. E. Edwards, E. Campaigne, and M. Carmack, J. Am. Chem. Soc., 81, 3148 (1959).

⁽³⁾ Baumann, Ber., 23, 60 (1890), proposed the transient existence of 1,1-olthiols in the preparation of trithianes by the reaction of hydrogen sulfide with aldehydes. R. W. Borgeson and J. A. Wilkinson, J. Am. Chem. Soc., 51, 1453 (1929), also proposed a 1,1-olthiol as the intermediate in the conversion of furfural to thiofurfural by hydrogen sulfide.